Number Sense: A Critical Foundation for Higher-Level Mathematics

Francis (Skip) Fennell, President
National Council of Teachers of Mathematics
\&
Professor of Education
McDaniel College
Thinking Mathematically 2007
Bucknell University
October 15, 2007

All students should leave elementary school with a strong sense of number

What does that mean? How do we do that?

Principles and Standards for School Mathematics

Content Standards

- Number and Operations
- Algebra
- Geometry
- Measurement
- Data Analysis and Probability

Some History!

Number Sense

- Number Meaning
- Relationships
- Magnitude
- Operation Sense
- Real Life Number Sense Applications

Do you have a sense of number?

- Is 4×12 closer to 40 or 50 ?
- How many paper clips can you hold in your hand?
- If the restaurant bill was $\$ 119.23$, how much of a tip should you leave?
- How long will it take to make the 50 mile drive to Washington, D.C.?
- If a 10-year old is 5^{\prime} tall, how tall will the child be at age 20?

Policy and Political Issues

- Number sense includes automaticity!
- Number sense is developed!
- Where does this fit in any state's curricular standards?

Number Meaning - Critical Issues

- Number Meaning
- Counting - Counting on, Counting back
- Composing and Decomposing

It starts with counting!

- Oral Counting
- Rational Counting
- Subitizing

- Counting On
- Counting Back
- Skip Counting
- For students in grades K-2, learning to see the part-part-whole relations in addition and subtraction is one of their most important accomplishments in arithmetic.

Important Benchmarks

- Early
- Ten
- Hundred
- Later On
- Thousand
- Million

0	1	2	3	4	5	6	7	8	9
10	11	12	13	14	15	16	17	18	19
20	21	22	23	24	25	26	27	28	29
30	31	32	33	34	35	36	37	38	39
40	41	42	43	44	45	46	47	48	49
50	51	52	53	54	55	56	57	58	59
60	61	62	63	64	65	66	67	68	69
70	71	72	73	74	75	76	77	78	79
80	81	82	83	84	85	86	87	88	89
90	91	92	93	94	95	96	97	98	99

100 Chart Patterns

- Numbers that have a difference of 1
- Numbers that have a 4 in them
- Every other number
- Even numbers
- Prime numbers
- Multiples of 5, 6, 3
- Divisible by 4
- Many, many more

100 Chart Puzzles

100

- 100 is a big number when it's:
- 100 is a small number when it's:

100 Chart Equations

- Circle 38. Add 10. Add 1. Subtract 9. Add 5. New number is \qquad
- Circle 6. Add 30. Subtract 8. New number is \qquad .
- $45-10+7=$
- Write your own:

Sun	Mon	Tues	Wed	Thur	Fri	Sat
	1	2	3	4	5	6
7	8	9	10	11	12	13
14	15	16	17	18	19	20
21	22	23	24	25	26	27
28	29	30	31			

Thinking about 1,000,000

- Make tallies for one minute. How many did you make?
- How long would it take to make 1,000 tallies?
- How long would it take to make 1,000,000 tallies?

Composing and Decomposing Number is Critical!

Math Wall Activities

$$
\begin{aligned}
& 24 \\
& 73 \\
& 49
\end{aligned}
$$

Today's Date

What's Next? Why?

- $5,15,20,30,35,45, \ldots$
- $1,1,2,4,3,9, \ldots$
- Friday, Thursday, Thursday, Friday, ...
-__, 25,

My number of the day*

- The number before my number is \qquad
- The number after my number is \qquad
- ___ is 10 more than my number.
- ___ is 50 more than my number.
- ___ is 100 more than my number.
- You can find my number by counting by
_'s.
*children select a special number each day

My number of the day*

- Multiply your number by 4:
- Subtract 1:
- What is the new number?
- How is the new number different from your number of the day?
- $4 \mathrm{x}-1=\mathrm{n}$

Name something that helps you attach meaning to each number below:

- 25
- 50
- 500
- 75
- 60
- 36
- 30

Favorites

- Write 3 numbers that have some significance to your life.
- Exchange lists. Provide random clues for the numbers.
- Guess which numbers fit the clues.

What's my number?

- Start with n . Double it. Now it's?
- What is $n \times 4$?
- What is $\mathrm{n} \times 10$?
- What is $\mathrm{n} \times 100$?
- What is $1 / 2 \mathrm{n}$? What is 50% of n ?
- What is $1 / 4 \mathrm{n}$? What is 25% of n ?
- Name two numbers n falls between.

Today's Secret Number (Mr. x)

- It is less than 3×8
- It is an even number
- It is more than 2 weeks
- It is not a multiple of 8
- It is divisible by 10
- What is today's number?

True or False - 818

- Number of students in your school?
- Number of people in your town?
- Number of players on the team?
- Number of pennies in a collection?
- Closer to 500 or 1,000?
- > 500
- > 750

Division and Fair Shares

- How would you share 11 subs among 4 people?
- How would you share 11 subs among 5 people?

Number Sense Language

- bunch
- pile
- flock
- herd
- stack
- handful
- basket
- cord
- crowd

Basic Facts

- Commutative Property
- Multiplying by 0
- Multiplying by 1
- Squares
- Doubles - 2's facts
- Nickels Facts - 5's facts

$9 \times 0=0$	$4 \times 0=0$
$9 \times 1=9$	$4 \times 1=4$
$9 \times 2=18$	$4 \times 2=8$
$9 \times 3=27$	$4 \times 3=12$
$9 \times 4=36$	$4 \times 4=16$
$9 \times 5=45$	$4 \times 5=20$
$9 \times 6=54$	$4 \times 6=24$
$9 \times 7=63$	$4 \times 7=28$
$9 \times 8=72$	$4 \times 8=32$
$9 \times 9=81$	$4 \times 9=36$

- Finding and using patterns and other thinking strategies greatly simplifies the task of learning multiplication tables.

Thornton, 1978

- Children need to identify individual products rapidly. Little is known about how children acquire this fluency or what experiences might be of most help.

Mystery Facts

- The sum of the digits in this 2-digit number is 9. The difference between the digits is 3 . A number that fits this description is \qquad . Multiplication fact(s):
- The tens digit in this 2-digit number is one-fourth of the ones digit The sum of the digits is an even number. A number that fits this description is \qquad . Multiplication fact(s):
- One of the digits in this 2-digit number is 5, but the number is not divisible by 5 . Nor is it divisible by 9. A number that fits this description is \qquad . Multiplication fact(s):
- How would you solve 14×8 mentally?
- Use an area model to show how 14×8 can be decomposed into 10×8 and $4 \times$ 8.
- $14 \times 8=(10 \times 8)+(4 \times 8)$

Boxes to multiply...

- Draw a rectangle to show $46 \times 7=322$

Navigations 3-5, Number and Operations, 2007

- How about 45×23

Connections - Division \& Mental Math

- 275 divided by 5
- Starter problem $250 \div 5$
- Quinn found 77 beads in a drawer. He was using them to make bookmarks. If he used 5 beads for each bookmark. How many bookmarks could he make?
- Starter problem $50 \div 5$

Algebra - Function, Change, Models

What pattern is being displayed?
What's the rule?
What's the graph look like?

In	Out
6	19
8	25
10	a
b	37

Estimation - Some Thoughts

- Estimating Magnitude - should begin early and occur often.
- Children are initially uncomfortable with computational estimation.
- The language of computational estimation is adult language. Children seem OK with such language as they grow - experientially.

Between - Density

- Name a number between 17 and 25.
- Name a number between 76 and 77 .
- Name a number between 3.49 and 3.53.
- Name a number between 3.4 and 3.5.
- Name a number between $1 / 8$ and $1 / 4$.

Target Number

- Start number is 6
- Goal number is 420
- Write equations to show how you can get to the goal number.
- Start = 13; Goal = 100
- Start $=1 / 2$; Goal $=5$

Estimate or Exact?

- Your school bus number.
- When to leave for school in the AM.
- When a flight will leave the airport.
- Total bill at a restaurant.
- When do you estimate?
- When must you have an exact response?

How many digits in the answer?

- $174+689=$
- $134+989=$
- $1,246-348$ =
- 874 - 567 =
- $12 \times 48=$
- $12 \times 336=$
- $2,344 \div 4=$

Think about this - A test!

- Four 2-digit numbers were added together.
- The sum is 100
- One of the addends is in the 20's.
- One of the addends is in the 50's.
- What can you say about the other two addends?

Ordering Fractions

Write these fractions in order from least to greatest. Tell how you decided.

. $5 / 3$	$5 / 6$	$5 / 5$	$5 / 4$	$5 / 8$
. $7 / 8$	$2 / 8$	$10 / 8$	$3 / 8$	$1 / 8$

Use Percent - Don't Wait!

- Put 2/3; 0.5 and $3 / 4$ in order from smallest to largest.
- It's easy, 0.5 is 50% and $2 / 3$ is 66%, and so it goes first 0.5 , then $2 / 3$ and then $3 / 4$ because that's 75\%.*
*response by Andy in New Approaches to Teaching the Rational Number System by Joan Moss in How Students Learn: Mathematics in the Classroom, NRC, 2005.

Percent Benchmarks

0%		
100%	50%	$<10 \%$
About 25%	About 75%	About 90%
$>50 \%$	$<50 \%$	
Lefthanders in the room or class		
Once lived in New Jersey		
Been involved in education > 10 years		
People who were born in Pennsylvania		

Missing Numbers

- What's my number?
- $2 x+7=y$
- Rule: Double the number and add 7. What's the number if $x=$

$$
\begin{aligned}
& 10 \\
& 100 \\
& 0.1 \\
& 0.01
\end{aligned}
$$

Decimals - What Happens?

Number $x 0.05 \times 0.48 \times 0.9$
100
60
24
?

- In general, what happens when you multiply a whole number by: 0.05; 0.48; 0.9?
- Begin thinking of 0.05 as 5% or nickel:dollar, etc.

Where's the decimal point go?

- $8.432 \times 5.75=48484$
- $3.044 \times 16.5=50226$
- $3.326 \times 0.32 \times 31.5=3352608$
- $306.15 \div 75.4=40603448$

Name that decimal!

- A decimal > 3 and <4
- A decimal > 2.15
- A decimal < 3
- Two decimals whose sum = 1
- Three decimals whose sum < 0.8
- Four decimals whose sum $=2.35$

And the equation is?

Start Number of Operations Total

5
36
$1 / 4$

two
three
four

13
100
$1 / 2$

Today's Target is 36

- Try to make today's target by:
- Adding 2 numbers
- Finding the difference of 2 numbers
- Multiplying 2 numbers
- Adding 3 numbers
- Multiplying 3 numbers
- Multiplying and subtracting
- YOUR own method!

McIntosh, Reys, Reys, and Hope (1997)
Algebra - Equations

Real Life Number Sense - Applications

Examples of Change

- At age 13, Jesse ran a mile in 5:40, how fast might he be able to run a mile at age 19?
- The drive to Williamsport took 25 minutes. How long will the trip take to get home?
- There were 7 people in the house at dinner time. How many people will be there for lunch?

Right or Wrong - Why?

- Tom found the average weight of children in his $4^{\text {th }}$ grade class was 196 pounds.
- Jack thought 7×89 was about 350.
- Joe is 9 , he weighs 70 pounds. When he is 36 years old, will he weigh 4 times as much?

Estimation

- How many 1-digit numbers are there? 2digit numbers? 3-digit numbers?
- The toll road is 243 miles long. If you traveled at a speed of 61 mph , about how many hours will you be on the toll road?
- The height of full grown human is about 21 times the length of the middle finger.

Are you sure?

Actual problem presented at a mathematics conference.

A dog traveled 15 meters per second. How far would the dog go in: a minute, a half-hour, an hour, a day?

Speeds of Some Animals

Cheetah
Lion
Zebra
Rabbit
"Super Dog"
Reindeer
Elephant
Chicken
$70 \mathrm{mph}(65)^{*}$
50 mph
40 mph
35 mph
33+ mph
32 mph
25 mph
8 mph

OK, what do we do about:

Time

- Where does this belong?
- Do we care about digital and analog time?
- Rich source of patterns and functions

Money

- This is hard for many children.
- What about models?
- Rich source of patterns and functions

What can you do in a minute?

- Sit-ups
- Listen to a song
- Finish my homework!
- Do a chore
- Wait a minute - really?

Just a Second...

- How many seconds do you spend at school each day?
- Describe what you were doing 1 million seconds ago.
- How old will you be and what do you expect to be doing 1 billion seconds from now?

Mann and Hartweg, TCM, 2005

What is your expected finishing time?

"Oh, about 2:45"

Time and Fractions

$$
1 / 2+1 / 4=3 / 4 ; 6+3=9 \text { of } 12 \text { or } 3 / 4
$$

$$
5 / 6-1 / 2=1 / 3 ; 10-6=4 \text { of } 12 \text { or } 1 / 3
$$

$$
1 / 4+2 / 3=11 / 12
$$

$21 / 4 \div 3 / 4=$
$1 / 3 \times 7=21 / 3$

Liz's Pizza Palace

- At Liz's the cost of a large pizza is $\$ 8.00$, but she always gives a $\$ 2.00$ off coupon to teachers. On Tuesday's pizza is 25% of the regular price. Heather, a teacher, has a coupon. The coupon can be used on Tuesday's.
- Does it make a difference when the value of the coupon is deducted from the price of the pizza?

Concluding Thoughts

- Number sense is elusive
- Number sense should be nurtured every day!
- A sense of number breeds confidence.
- Number sense is not the final chapter in a 12 chapter book!
- Numb3rs are everywhere!

